X^2+x=17780

Simple and best practice solution for X^2+x=17780 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+x=17780 equation:



X^2+X=17780
We move all terms to the left:
X^2+X-(17780)=0
a = 1; b = 1; c = -17780;
Δ = b2-4ac
Δ = 12-4·1·(-17780)
Δ = 71121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{71121}}{2*1}=\frac{-1-\sqrt{71121}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{71121}}{2*1}=\frac{-1+\sqrt{71121}}{2} $

See similar equations:

| 2f-40÷44+f=0 | | 8x-8=-2x+-38 | | 6s+2-6-4s=2 | | 2x-(-x)+3(-x)+x+8=(-x)-x | | 8-y=45 | | X2-80x-1500=0 | | 4x+2(-x)+1=1x+13 | | 8+y=45 | | 1/3(4b+15)=2/3b-1 | | 587.84=3.14r*r | | X2-8x-1500=0 | | 50+62+x+53+80=180 | | y+8=45 | | x=0.5x+87.5 | | -6-22x=12 | | F(x)=5x^2-2x-10 | | 16(3y+4)=-8(6y+8) | | 3(x+8)=5(x-2) | | 250=78x | | 22+3(3n-13)=1 | | 0=4x^2+11x-8 | | |-7-2x|=11 | | -7x^2=(3x+5)(3x-5) | | 139+12x=99+17x | | 4x-28=8x-16 | | X+20+3x-50=102 | | 65+80+50+x=180 | | 12s=7s-25 | | t/3=17 | | 1/5x-8=2x-533 | | 65+x+80+50=180 | | (50+-2y)+2y=50 |

Equations solver categories